Surface Stretching for Ornstein Uhlenbeck Velocity Fields

نویسندگان

  • RENE A. CARMONA
  • STANISLAV GRISHIN
  • LIN XU
چکیده

The present note deals with large time properties of the Lagrangian trajectories of a turbulent flow in IR and IR. We assume that the flow is driven by an incompressible time-dependent random velocity field with Gaussian statistics. We also assume that the field is homogeneous in space and stationary and Markovian in time. Such velocity fields can be viewed as (possibly infinite dimensional) Ornstein-Uhlenbeck processes. In d spatial dimensions we established the (strict) positivity of the sum of the largest d−1 Lyapunov exponents. As a consequences of this result, we prove the exponential stretching of surface areas (when d = 3) and of curve lengths (when d = 2) which confirms conjectures found in the theory of turbulent flows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic Communications in Probability Surface Stretching for Ornstein Uhlenbeck Velocity Fields

The present note deals with large time properties of the Lagrangian trajectories of a turbulent ow in IR 2 and IR 3. We assume that the ow is driven by an incompressible time-dependent random velocity eld with Gaussian statistics. We also assume that the eld is homogeneous in space and stationary and Markovian in time. Such velocity elds can be viewed as (possibly innnite dimensional) Ornstein-...

متن کامل

Convergence of Passive Scalar Fields in OrnsteinUhlenbeck Flows to Kraichnan's Model

We prove that the passive scalar field in the Ornstein-Uhlenbeck velocity field with wave-number dependent correlation times converges, in the white-noise limit, to that of Kraichnan’s model with higher spatial regularity.

متن کامل

Convergence of Passive Scalars in Ornstein-uhlenbeck Flows to Kraichnan’s Model

We prove that the passive scalar field in the Ornstein-Uhlenbeck velocity field with wave-number dependent correlation times converges, in the white-noise limit, to that of Kraichnan’s model with higher spatial regularity.

متن کامل

Ornstein-Uhlenbeck limit for the velocity process of an N-particle system interacting stochastically

An N-particle system with stochastic interactions is considered. Interactions are driven by a Brownian noise term and total energy conservation is imposed. The evolution of the system, in velocity space, is a diffusion on a (3N − 1)-dimensional sphere with radius fixed by the total energy. In the N → ∞ limit, a finite number of velocity components are shown to evolve independently and according...

متن کامل

99 10 02 8 v 1 2 0 O ct 1 99 9 Ornstein – Uhlenbeck – Cauchy Process

We combine earlier investigations of linear systems with Lévy fluc-We give a complete construction of the Ornstein-Uhlenbeck-Cauchy process as a fully computable model of an anomalous transport and a paradigm example of Doob's stable noise-supported Ornstein-Uhlenbeck process. Despite the nonexistence of all moments, we determine local characteristics (forward drift) of the process, generators ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998